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Critical Behavior of a KAM Surface: 
I. Empirical Results 

Scott  J. Shenker  m and Leo  P. Kadanoff 1 

Received July 20, 1981 

Kolmogorov-Arnol 'd-Moser  (KAM) surfaces are studied in the context of a 
perturbed two-dimensional twist map. In particular, we ask how a KAM surface 
can disappear as the perturbation parameter is increased. Following Greene, we 
use cycles to numerically construct the KAM curve and discover that at the 
critical coupling it shows structure at all length scales. Aspects of this structure 
are fitted by a scaling analysis; critical indices and scaling functions are 
determined numerically. Some evidence is presented which suggests that the 
results are universal. 

KEY WORDS: KAM surface; twist map; critical exponents; coupled oscil- 
lators. 

1. INTRODUCTION 

In recent years, it has become fashionable to utilize discrete maps in 
studying dynamical problems involving instability, noise, or stochastic- 
ity.(l-4) These discrete methods seem especially well suited to exploring the 
transition to chaotic behavior in simple dynamical systems. (5) Following 
the work of Greene, (6-9) we use two-dimensional, area-preserving maps to 
investigate a particular brand of chaotic transition: the destruction of 
KAM surfaces in conservative Hamiltonian systems with two degrees of 
freedom. Much of the preliminary material has been covered extensively in 
recent review articles (l~ and will only be covered here briefly. 
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In integrable Hamiltonian systems with n degrees of freedom, all 
trajectories lie on invariant n-tori. The content of the theory developed by 
Kolmogorov, Arnol'd, and Moser (KAM)(13-15~ is that most (in the sense of 
measure theory) of these invariant n-tori persist, albeit deformed, when a 
sufficiently small perturbation is added to the original Hamiltonian. These 
surviving invariant n-tori are called KAM surfaces. As the magnitude of 
the perturbation increases, fewer and fewer of the KAM surfaces remain. 
The question we address in this paper is how does a KAM surface 
disappear? 

We study this question in the context of conservative and integrable 
Hamiltonian systems with two degrees of freedom. The dynamics of such a 
system is essentially that of two uncoupled oscillators. In action-angle 
coordinates I, J,  0, ~, the equations of motion are simply 

l ( t )  = I(0) ,  J ( t )  = J(O) 
(1.1) 

O(t) = ~1 t + 0(0), ~b(t) = 602t + ~(0) 

where the frequencies ~01, r 2 are functions of I and J. The problem can be 
made discrete by only considering the values I n, 0 n of I(t),  O(t) when 
~(t) = n and working at one specified total energy E. (Here, and elsewhere 
in this paper, we identify r with ~, + 1 in phase space and absorb all factors 
of 2~r.) This generates a trivial recursion relation called the twist map 

where r n -- ~1/~02, a function of I n and E, is called the winding number. 
This discrete map captures all of the essential physics of the integrable 

continuous system. Each initial condition z 0 -- (r o, 00) generates a series of 
points zl, z 2 . . . .  which is a discrete representation of a continuous dynam- 
ical trajectory. The qualitative nature of the trajectory is determined 
completely by the winding number. If r 0 = P~ Q for P, Q relatively prime 
integers, then the resulting series of points is a periodic Q-cycle with 
rQ = r o, OQ = 0 o + P. If the winding number is irrational then the resulting 
points never repeat but continue to fill densely the line r = r 0 in the r, 0 
plane. This invariant curve r -- r 0 is merely the discrete representation of an 
invariant 2-torus in phase space. 

If we add a perturbation to the Hamiltonian to generate a noninte- 
gab l e  system, that will have the effect of perturbing the twist map. Since 
we are restricting ourselves to conservative systems, the map must remain 
area-preserving. A new kind of motion emerges in the continuous system, 
one which appears to cover a whole three-dimensional region in the 
four-dimensional phase space. Correspondingly, the discrete map shows 
sequences of points {z n } that never repeat and which do not lie on any 
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smooth curve. These kinds of sequences are called chaotic trajectories. 
They are associated with invariant toil which have been destroyed by the 
perturbation. 

I n  this paper, we study one particular family of perturbed twist maps, 
called the Chirikov-Tayior ~12'16) map 

On+l _On q- rn + kg(On) O n 

where, in the standard form, g (0 )=- (1 /2~r ) s in2~r0 .  The Moser twist 
theorem r states that, for small enough k, many of the original invariant 
curves will survive. These particular KAM curves can be characterized by 
their winding number W: 

On -- 00 
w =  l im - -  (1.4)  

n--> oo n 

Greene, ~s) in his extensive and pioneering studies of this map, has found 
empirically that the last remaining KAM curve with finite W has W 
= ( v ~ - -  1)/2, the reciprocal of the Golden Mean. This KAM curve 
disappears when k reaches the critical value of k c = 0.9716354 . . . .  We 
focus our attention on this particular KAM curve and study its structure 
for k --- kc. (There are also other equivalent KAM curves, e.g., at winding 
numbers _+ W plus an integer.) We find that at k c the curve has a 
seale-invariant structure and can be analyzed using scaling functions analo- 
gous to those introduced by Widom. ~7) 

In Section 2, we present a more detailed explanation of the Moser 
twist theorem and our version of a method, introduced by Greene, of 
studying KAM curves. We present our results in Section 3, and discuss the 
precision of our numerical work in an Appendix. 

2. M E T H O D O L O G Y  

2.1. The Moser Twist Theorem 

Our basic computational tool is the Moser twist theorem, (l~) which 
states sufficient conditions for a KAM curve to exist. Consider an unper- 
turbed twist map 

L~oj t.+, 

sn+ ~ = s,, (2.1) 

t , + l =  t ,  + s ,  
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and the perturbed map 

-'[0.+1] 
r.+, = r, + kg(O.)  (2.2) 

o.+, = o. + r. + kg (O. )  

The theorem states that for a "sufficiently irrational" winding number 
W = s 0, and sufficiently small k, there is a change of coordinates U: 
(s, t) ---> (r, 0) 

r( t )  = s + v( t)  
(2.3) 

o( t )  = t +  u( t )  

where u, v are periodic such that the relation 

T O = U -1Ta U (2.4) 

holds on the line s = W. The precise statement of the irrationality condition 
is that there exist c greater than zero such that for all integers m, n 

w -  ~ > c (2.5) 
m rn z5 

Relations (2.3) will form the basis of our numerical studies. By 
constructing the functions u(t), v(t),  we will have found a parametrization 
of the KAM curve. We can find equations for u(t) and v( t )  directly by 
combining equations (2.3) and (2.4): 

u( t  + W )  - u( t )  = v ( t )  + kg ( t  + u( t ) )  
(2.6) 

v(t  + w) - v(t) = kg(t  + u(t)) 

2.2. Cycles 

Finite length periodic cycles have rational winding numbers. In partic- 
ular if Oo = 0 o + P, ra = r o then W = P~ Q. The Q-cycles are characterized 
not only by their winding number but also by their stability properties. In 
the linearized limit, deviations 30o,& o about a fixed point of T Q are 
mapped into deviations 300, 3ro by the tangent map of T Q evaluated at the 
fixed point: 

[&Q &o ] 

I 
M =  

~r~ Or e 
~ro a0o 
O0 o O0 o 

Or o 00o 

(2.7) 
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Since Tk, and therefore T Q, is area-preserving, M has determinant one and 
the eigenvalues X~, )t 2 depend solely on the trace of M: 

X 2 - ) t (TrM)  + 1 = 0 (2.8) 

Following Greene, we define the residue R of a cycle as R = ~(2 - T rM) .  
The invariant curves of M are conic sections a n d  generically they deter- 
mine the stability properties of the cycle. There are two distinct classes. If 
X 1 --- X~ (0 -<< R < 1) the invariant curves are ellipses and initially small 
deviations remain forever bounded. 3 If Xl is real (R < 0 or R /> 1) the 
invariant curve is a hyperbola and initially small deviations increase 
exponentially. The residue provides a convenient way of classifying cycles 
as elliptic or hyperbolic. 

At k = 0, all trajectories with W = P/Q, P and Q being relatively 
prime integers, are actually cycles of length Q in which 0 increases by P in 
the course of the cycle. There is a one-parameter family of such Q-cycles 
since 0 o is arbitrary. The twist theorem tells us nothing about the fate of 
these families of Q-cycles for nonzero k. The Poincart-Birkhoff  fixed point 
theorem states that for nonzero k, there are only a finite number of such 
Q-cycles left. In fact, there are an even number of these cycles, half of them 
elliptic and half of them hyperbolic. For our particular map, Greene (8) has 
observed that for small enough k there are exactly two such cycles for every 
W= P/Q. 

In general the residue of a Q-cycle will change as we vary k. If the 
residue passes through one from below, the original elliptic Q-cycle bifur- 
cates, becoming hyperbolic. Associated with this bifurcation is the creation 
or destruction of two or more longer cycles. See Greene et al. (18) for an 
extensive discussion of bifurcations in area-preserving two-dimensional 
maps. 

2.3, Approximation of KAM Curve 

The only analytic techniques for studying KAM curves directly are 
perturbative ones which break down for k near kc, which is exactly the 
regime we are interested in. Numerical techniques, while nonperturbative, 
have their own weaknesses. Finding a KAM curve entails searching for a 
trajectory which never repeats itself yet continues to fill in a smooth curve 
in the r, 0 plane forever. Clearly no finite precision, finite time numerical 
approach could ever test these conditions. 

3 There are nongeneric cases where the linear analysis is not enough to ensure stability, such as 
X3= 1 orX 4 =  1. 
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Greene, (8) however, has introduced a method for studying KAM 
curves which involves finite cycles only. Suppose one is interested in 
studying a KAM surface with irrational winding number W. First, con- 
struct a series of rational approximants W i = P J  Qi which converge to W 

W = lim W~ (2.9) 
i---~ c~ 

Then, find the two Qi cycles with winding number IV/. Greene presents 
strong evidence that the K_AM curve can be determined from the accumu- 
lation set of the points of these Q, cycles. Thus, the KAM curve exists if 
there exists a sequence of Qi cycles which converges onto a smooth curve. 
We assume that all behavior of the cycles which persists in the limit Qi -~ 
reflects the true behavior of the KAM curve. 

Greene also shows that the existence of the KAM curve is strongly 
connected with the stability properties of the Q~ cycles. We introduce two 
functions Rf(k),Rih(k) as the residues of the elliptic and hyperbolic Qi 
cycles at a given value of the perturbation parameter k. Greene's data 
indicate that 

~0 +, k < k c 
lim Re(k)  = l a  k = k c (2.10) 
i-->~ k • k e 

lira R~h(k) = k = k c (2.11) 
/---~OO k > k c 

where a, b are positive constants less than unity. This provides an extremely 
accurate way of determining k c. It also shows that for k < k c, the elliptic 
cycles remain elliptic as i ~  oe, i.e., there are no bifurcations. 

Our approach will be slightly different from Greene's in that the main 
object of study will not be the KAM curve in the r, 0 plane but rather the 
functions u(t) and v(t). We can use the approximating Qi cycles to 
construct functions uo_,(t ), VQ,(t) which approximate u(t) and v(t). For the 
cycle of type a(a = e or h) with winding number W~ we can construct 
relations directly analogous to Equations (2.3). 

We write the cycles in the form 

o2 --- t2 + uLn 
(2.12) 

r2= W, + VQ,,,~ 

where 

tff = t~ + nW i (2.13) 
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To achieve a smooth transition to the i---) c~ limit, we define in analogy to 
Eqs. (2.3) functions rQ,(t), OQ,(t), ue,(t ) and vQ,(t) which reduce, respec- 
tively, to the values r f ,  Off, U~,,n, and vd,,, when t has the values given by 
Eqs. (2.13). Thus Eqs. (2.12) imply 

0f  = 0 e ( C  ) = tn + uQ,(U) 

rff = rQ (tff) = W i + v g , ( t f )  
(2.14) 

In order to achieve a full definition of these functions we demand that 
OQ,(t) -- t, re,(t ) -- W i, UQ,(t), and vQ,(t) all be periodic functions of t with 
period one and that uQ,(t) be an odd function of t. The oddness can be 
achieved by picking tg to be zero for the elliptic cycle and (2Qi)-1 for the 
hyperbolic cycle. Then, the functions uo_,(t ), ve,(t ) are defined on an evenly 
spaced mesh of points tj = j / 2 Q , j  = 1, 2 . . . .  , 2Q.  Just as we assumed that 
the Qi cycles would converge onto the KAM curve, we also assume that the 
functions UQ,(t), VQ,(t) will converge to u(t), v(t), when an appropriate set of 
approximating cycles is chosen and their length is taken to oo. 

In our work, we often find it convenient to deal with the u's in their 
Fourier transformed representation. Tha t  is, we write for the KAM trajec- 
tory 

u(t)  = ~ A(~)sin2~ro~t (2.15) 
~ = 1  

and for the cycles 

Qi 
UQ~(t) = ~ A Q'(w)sin2~r~t (2.16) 

~ = 1  

where the w's are integers. Equation (2.16) then serves to define UQ,(t) for 
all values of t. 

There is a systematic way to determine the rational approximants W~. 
Every irrational W E (0, 1) has a unique representation as a continued 
fraction ( ~ 9) 

1 
W =  1 ==-(al,ag,a 3 . . . .  ) (2.17) 

a I + 1 
a 2 + 

a 3 + �9 . . 

where the a i are positive integers. Truncating this series at the ith term 
produces a rational number 

Wi = P i /  Qi = (al ,a2,a3 . . . . .  a i _ l , a i ,  oo) (2.18) 
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which closely approximates W. These W/represent the optimal choice for 
rational approximants. The deviations W,.-  W alternate in sign as i in- 
creases, so the KAM curves are bounded above and below by the Q,. cycles. 

The size of the a i indicate the closeness of W to rationals. In this sense, 
the most irrational number would have a i = 1 for all i. The resulting 
number is W = (~/5- - 1)/2, the reciprocal of the Golden Mean. For this 
number, the rational approximants W~ are given by 

W i = F i / F i +  1 (2.19) 

where F~ indicates the ith Fibonacci number. 4 Interestingly, Greene's study 
indicates that the KAM surface having the largest critical coupling has 
winding number IV* = (~-  - 1)/2. Greene points out that this is to be 
expected, since the KAM proofs stress the degree of irrationality of winding 
numbers. In any case, we will focus our attention on this winding number. 

2.4. Symmetries 

In general, finding a Q cycle involves searching the entire r, 0 plane. 
However, the standard map has a symmetry property called reversibil- 
ity (2~ which greatly simplifies this task. Reversibility implies that t h e  
standard map T k can be written as a product of two involutions 

with 

T k = 1211 (2.20) 

r -- r /1[0] ir   J2 ,sin2o0]0 0]  221, 
Note that 12 2 = 112 = identity map and de t I  1 = d e t I  2 = - 1. 

Greene ~8,~s) has observed that for any Q cycle, at least two out of its Q 
points are fixed points of 11 or 12. Thus, to find a Q cycle, we need only 
search four lines in the r, 0 plane 

a =  ( ( r , O ) [ O = O )  

b = ((r,  0 ) [ 0 = 1 /2)  fixed points of I l (2.22) 

c = { ( r , O ) l O  = r 1 2 }  

d =  { ( r , O ) l O = ( r +  1)/2} fixed points of I2 

Since each cycle must have two points in the union of these sets, a cycle 
starting at a point z 0 E a must eventually be mapped into one of the sets a,  

4 The Fibonacci numbers are defined by F 0 = 0, F 1 = 1, F/+ 1 = F i + Fi_ I . 
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Table I. Routing Patterns for Rational 
Approximants to W =  (1111111 . . . )  

i W~. = Pi/Qi Routing pattern 

o o/1 [ 
1 1/! II 
2 1/2 III 
3 2/3 I 
4 3/5 II 
5 5/8 III 
6 8/13 I 
7 13/21 II 
8 21/34 III 

b, c, or d before returning to z 0. For k = 0 and a particular winding number 
W = P~ Q, we find three cases 

II ( Q o d d }  

P odd 

III { Qeven}Podd 

Q o d d )  z o E a ~  (Tk(O+l)/2Zo )EC,  Z o E C ~  (T(kO-O/2Zo ) E a  
e e v e n  zo E b ~ ( T(k Q+ O /2Zo ) E d, zo E d ~ ( T(k Q- O /2Zo ) E b 

ZoEa~ (Tk(Q+')/2z o )Ed, z o E d ~  (T(kQ-')/2Zo )~a 
z o e b ~  (Tk(O+')/2z o ) E c ,  Z o e C ~  (T~Q-')/2z o ) ~ b  

z o @ a =  (Ty/2zo ) ~ b ,  z a @ b =  (Ty/2zo ) @ a  
Zo E C ~  (Tf/2Zo ) ~ d, zo E d =  (TQ/2z o ) ~ c 

We call the pattern of these lines mapping into each other a routing 
pattern, and it remains invariant as k varies unless a bifurcation occurs. We 
will always be working with cycles that  have not bifurcated, so we can use 
these three general routing patterns. Since there are two Qi cycles for each i, 
there are a total of four points on the symmetry lines a, b, c, d. It turns out 
that there is one on each line, with the elliptic cycle always having a point 
on the /t-line. Following Greene et al. (~8) we call this the dominant 
symmetry line. 

It should be noted that for HI* = (~- - 1)/2, the series of the rationaI 
approximants cycles among the three routing patterns (see Table I). This 
will be important in our subsequent analysis. 

3. R E S U L T S  

Equipped with these numerical techniques, we studied the metamor- 
phosis of the KAM curve with winding number W* = (~- - 1)/2 as k 
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varied from 0 to k c. Our results will be presented in three sections: a 
graphical section, in which we look at the global properties of the KAM 
trajectory, and sections on scaling and universality in which we focus upon 
very restricted regions of the KAM curve. 

3.1.  G loba l  Proper t ies  

When k = 0, the KAM curve is the straight line r = W* in the r, 0 
plane. Each approximating Qi cycle has Qi points equally spaced along the 
line r = W,. (Fig. 1). Actually, there are an infinite number of such cycles 
for each i, filling in the entire line, but we have depicted only the two cycles 
that persist for nonzero k. These cycles clearly converge onto the KAM 
curve, and the rate of convergence 8 is merely that of the rational 
approximants 

= lim W~+I-  W/ _ _ ( W , ) 2  (3.1) 

For k = 0.5, the straight line becomes somewhat deformed. Figure 2a 
shows the two cycles with winding number W]8 = 2584/4181. While this is 
not the exact KAM curve, it would be impossible to see any deviations on 
this graph since [W]8 - W* I < 3 • 10 -8. A magnified view of a portion of 
these cycles reveals an essentially linear structure (Fig. 3a). 

The critical case, k = k c, is problematical. The 4181 cycles appear 
smooth (Fig. 2b) but all of their detailed structure is washed out by the 
poor resolution of the graphics. The magnified view (Fig. 3b) reveals a 
tremendous amount of fine-scale structure. It turns out that the critical Qi 

1.0 

i W i 

l t/t 

W ~ X 0 X O 0 0 

0 X 

0.0 . . . .  " . . . .  0 
0.0 0.5 1.0 

0 

2 I/2 

~ 

Fig. 1. Several approximating Qi cycles converging onto the invariant curve r = W + (solid 
line) for k = 0. The O's (• 's) denote cycles which become elliptic (hyperbolic) for nonzero k. 
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0.0 
0.0 

1.0 

I 

0.5 

0 
A 

1.0 

J 

0.5 

0.0 
0.0 ' 01s 

0 
B 

J 

t.0 

Fig. 2. The two cycles with winding number Wt8 = 2584/4181. In (a) k = 0.5 and in (b) 
k = k C = 0.9716354. The finite resolution of the graphics turns the 8362 discrete points into a 
smooth curve. 

cycles never have linear behavior on any length scale, and continue to 
exhibit finer and finer structure as i increases. Greene (8) presents pictures 
similar to these, and the reader is referred there for a more complete 
discussion. 

We study the KAM curve through the functions u(t) and v(t). Actu- 
ally, we need only study u(t) since the two functions are simply related 
through relations (2.6) 

v ( t )  = u ( t )  - u(t- w*) (3.2) 

The function u(t) represents deviations from integrable behavior so it is 
identically zero for k = 0. For k = 0.5, the magnitude of u(t) is still quite 
small (Fig. 4a shows Ua,(t) with Qi = 4181). Only a few of the Fourier 
coefficients A ai(o~) are large (Fig. 5a). We have plotted o~ x A (~) vs. w so as 
to exhibit the high o~ end of the spectrum more clearly. As k increases the 
magnitude of u(t) grows roughly linearly in k, and there is a marked 
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Fig. 3. Magnified views of a portion of the two cycles with winding number Wt8 = 
2584/4181. In (a) k = 0.5 and in (b) k = k c = 0.9716354. The O's (• denote points on the 
elliptic (hyperbolic) cycle. 

increase in the higher Fourier components (Figs. 4b and 5b). The pr imary 
peaks in the spectrum occur at Fibonacci numbers, reflecting the fact that 
the motion is almost periodic after F,. iterations. The subpeaks occur at 
sums and differences of nonadjacent Fibonacci numbers, which is again 
symptomatic of the almost periodic nature of the K A M  curve. An empiri- 
cal formula suggested by D. Escande 21 which captures much of this 
behavior is 

e -/~(k),0 
a (,o)-- ,031sin 2~,o W,I 2 (3.3) 

where fi(k) is a positive function of k. It  should be stressed that while this 
form of A (~0) gives a reasonable representation of the largest peaks in the 
data, it does not yield quantitatively correct scaling behavior. 

Figures 4c and 5c depict the critical u(t) and its Fourier transform. 
Now the Fourier peaks decay algebraically (as 1/o~), not exponentially, so 
that fl(kc) = 0 in the above formula. By fitting the spectra to this functional 
form for several values of k near k c it was determined that fl(k) is 
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Fig. 4. The function u~(t) for Qi = 4181. In (a) k = 0.5, in (b) k = 0.9, and in (c) k = k c = 
0.9716354. Since we have chosen uQ,(t) to be an odd function with unit period, we need only 
display the function for 0 < t < 0.5. 

essen t ia l ly  l inea r  in k c - k for  sma l l  dev i a t i ons  f r o m  cr i t ica l i ty .  I t  is c lea r  

f r o m  the  f o r m  o f A  (w) tha t  wh i l e  u(t) is c o n t i n u o u s  for  k = kc, it l acks  a 

c o n t i n u o u s  de r iva t ive .  F o r  e x a m p l e ,  the  d e r i v a t i v e  a t  t = 0 

u ' (0 )  -- ~ o~A (o~) (3.4) 
~O 

diverges .  
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The Fourier  coefficients A ~(~)  for Qi = 4181. In  (a) k = 0.5, in (b) k = 0.9, and in (c) 
k = k c = 0.9716354. 
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0.015 

I 
! 1 
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o.ooo 

55 89 144 253 577 

W 

Fig. 6. The Fourier coefficients AQ~(o~) for Qi =4181, k = k c = 0.9716354 and 55 < W 
~< 377. 

We are now in a position to justify the claim that u(t) at k = k c has 
"structure at all length scales." Consider Fig. 6, which is the spectrum 
A Q,(~o) for k = k c and Qi = 4181 with the low and high 0~ behavior deleted. 
(The deviations from regularity for high o~ are merely due to the finite size 
of the cycle, and would disappear in the limit Qi ~ ce.) Between any two 
consecutive primary peaks there is a repetition of essentially the same 
complicated structure. Thus, the major features of structure in A (~0) for 
Qi-1 ~ ~ <~ Q~ is almost the same as for Qi < ,0 -<< Q~+ 1, except that the 
frequencies are scaled up by a factor Qi+l/Qi and the magnitudes of the 
Fourier components are scaled down by the same factor. The limiting result 
of this infinite cascade is a function u(t) which has "structure at all length 
scales." Furthermore, we can posit the stronger statement that the struc- 
tures at different length scales are similar and related. This leads to scaling. 

3.2. Scaling 

The scaling properties are best illustrated by investigating how the 
discrete functions Oq,(t) converge to O(t). The quantity of interest is di(t), 
where 

( l )  
di( t  ) = Oai t dl- ~ i  -- Oai(t) ( 3 . 5 )  

is the difference in OQ,(t) at two adjacent points. Numerical results indicate 
that for all k < k C 

lim di(t) = 0 (3.6) 
l---~ Oo 
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establishing the continuity of O(t). For k < k c, and sufficiently large i, the 
difference di(t ) becomes essentially linear in (2Qi) -1 and 

4(t) O'(t)-- lim (3.7) 
i-~oo (1 /2Qi )  

has a well-defined, finite limit. 
At criticality, the difference di(t ) never becomes linear in (2Qi) -~'. 

Instead, the deviation falls to zero via some nonanalytic power law. This is 
most easily seen at t = 0, 

di(O) Qi - (3.8) 
where x o = 0.721 +_.001. To present the results for nonzero t, we must 
remember that the routing patterns have period three. This fact, apparently 
unimportant below criticality, is crucial for analyzing the k = kc results; the 
observed power laws are apparent only when we shift i by three. For 
instance, the scaling behavior at t = 1/2 is 

| - - X  1 d3i+j(~)~ajQ3i+j (3.9) 

where j  = 0, 1,2, the aj are constants, and x I = 1.093 _.001. 
We can connect the critical and subcritical behavior through the use of 

scaling functions. All of our information about the scaling properties of 
di(t ) can be expressed in the two relations 

1 

(3.10) 
1 d3i+j( �89 )--Q37+)f~J)( -~i ) 

where e = k c - k and the scaling functions satisfy 

(i) f0(X)~Xl - xo, X << 1 
(3.11) 

f~J)(X)~X 1-~, X<< 1 

(ii) lim fo(X) and lira f~J)(~) exist and are finite 

In Figs. 7 and 8 we exhibit the numerical evidence for the existence of the 
scaling functions fo, f~ ~ Similar evidence exists for the other scaling 
functions f~l) and f~2). In Eqs. (3.10) a fit to a function of ~Qi is also 
possible. Roughly equally good fits are obtained throughout the range 
0.98 < v < 1.01. However, for theoretical reasons (see below) it seems 
sensible to guess v = 1. 



Crit ical  Behavior  of a K A M  Sur face  6 4 7  

0.5 

0 

0 

-5 -  

/ 
x +  r 

0 . 0  i i ~ i J ~ i 

0 6 
(~Q)-I 

I 
r  r 

E 

1.50 x 10 -3 
o 1.25 x I0 -3 
'*. 1.00 x 10 .3 
+ 0.75 x I0 -3 
• 0.50 • I0 3 
<> 0.25 x I0 -3 

i i J i 

12 

Fig. 7. Ev idence  for the exis tence of the scal ing func t ion  fo(1/cQi) = di(O)Qi x~ di(O)Q/~~ has  

been  p lo t ted  versus  (eQi)- l for several  va lues  of Qi and  c = k c - k. 

We now return to the r, 0 plane and study how the Qi cycles converge 
onto the KAM curve. In order to make quantitative statements we must 
restrict our attention to the intersection of the Qi cycles with the a and b 
symmetry lines. Let ri ~ ri b denote the values of r for the points on the Qi 

cycles having 0 = 0, 0.5 respectively. Then, we study how these values 
converge to the limiting values 

o = lim ri ~ 
i-~oo 

(3.12) 
b lim ri b 

i--~ or 

0.6 

C~ 

- x  
"-F._ 

+ 

0.4 , 
0 

X 
�9 o O~  + 

t 
E 

1.50 x I0 -3 
o 1.25 x I0 -3 
+ 1.00 x I0 -3 
+ 0.75 x 10 .3 
• 0 .50  x I0 -3 
o 0.25 • I0 -3 

r I i J i 

6 12 (~Q)-I 
Fig. 8. Ev idence  for the exis tence of the scal ing func t ion  f l~  -- d3i(1/2)Q~L 

d3i(1/2)Q~i t has  been  p lo t ted  versus (eQ3i) for several  values  of Q31 and  c = k c - k.  
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which are the r values of the intersection of the KAM curve with the a and 
b symmetry lines. Numerical results show that for k < k c, a = a or b 

i+1 ri Q i  (3.13) 
ri a - -  ri a- 1 

~ - r ~ O - 2 ~ W  - W~. This is exactly the convergence indicating that r i ~ ~ ,  _ _  

behavior we found in the integrable limit k = 0. It shows that the approxi- 
mating Qi-cycles are arranged linearly in W* - W~ around the KAM curve. 

For k = kc, the ri ~ approach r~ in a nonanalytic fashion. Our numeri- 
cal results indicate that 

ra __[ I y~ ; + l  - r~ ~ Q______L_~ ( 3 . 1 4 )  
r~ - rF-l Qi+, 

- -  r 3 i + j  ~ Q 3 i  (3.15) 
r3bi+j b Q3(/+ 1) - r 3 (  i - 1 ) + j  

where 

Y0 = 2.329 +_ .001 
(3.16) 

y] = 1.957 _ .001 

This is consistent with 

Iri a - r~l~Qi-yo--~l  IV,. - W*I yo/2 (3.17) 

[rb3i+j b -y,  
- r~l--bjO3~+j--byl W3,+j - W*l y'/z (3.18) 

where bj is a set of constants. However, we cannot use scaling functions to 
combine the critical and subcritical behavior of r, because we have no 
independent method for determining r~ to sufficient accuracy. 

The tangent map also exhibits scaling behavior. Each tangent map 
M i ( z o )  at a fixed point z 0 of T ~  can be characterized by three quantities: 

(i) Residue Ri(zo) = �88 - TrMi(zo) ] 
(ii) Ratio #~(Zo) of minor to major axes of the invariant curves 

(hyperbolae or ellipses) of Mi(zo) 
(iii) Tilt angle ~i(z0)of the major axis with respect to the 0-axis. 

The tilt angle ff has the least interesting behavior. For  all nonzero k, ~,i(Zo) 
has a finite nonzero limit ~(z0) as i ~  ~ .  The ratios p~(Zo) have a far less 
trivial critical behavior, one that depends on the symmetry class of z 0. For 
fixed points z o on the a symmetry line 

1 oi( Zo)--Qi-~Oho( -~ i  ) (3.19) 



Critical Behavior of a KAM Surface 6 4 9  

and for z 0 on the b symmetry line, 

P3i+j (ZO)  ~ Q3-i+~h~J)( ~cQ3i+j ) (3.20) 

where ~?0 = 1.608 _+.001, 711 = 0 .864_  .001 and the scaling functions ha(A ) 
reach a finite limit at A = oo. Figures 9 and 10 present the evidence for the 
existence of the scaling functions ho, h~ ~ Once again, similar evidence 
exists for the other scaling functions h~ l) and h~ 2). 

The residue Ri(zo) is invariant under coordinate transformations, de- 
pending only on the trace of Mi(zo), so the residue at any two fixed points 
of Tk o' on the same Q,. cycle will have the same residue. Thus, we need only 
consider the two functions Ri e, Ri h defined in Section 2. In the limit of large 
Qi and small c, the residues are matched quite closely by the formula 

Rf R: (W*y BoQ' 

Rih Rh( 
(3.21) 

where R e = 0.250 _ .001, R h = -0 .255  _+ .001, and/30 = 2.30 _ .01. If we 
had chosen the scaling index, p, for c to be different from unity then Eq. 
(3.21) would imply that for large Q and small (, R h would be a function of 
E'Q. However, Greene has argued that for all ~ < 0 the residues have a 
leading behavior which is exponential in Q. Hence the only possible 
structure is lnRh~C/3oQilnW *. But since the hyperbolic cycles vary 

0.8 

c~ 
62 

0.0  
0 

i 

6 
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E 
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12 

Fig. 9. Evidence for the existence of the scaling function ho(1/cQi ) = &(zo)QF ~ where z 0 is a 
fixed point of T ~ on the 8 = 0 symmetry line. pi(zo)Qi n~ has been plotted versus (cQi)- J for 
several values of Qi and c = k c - k. 



6 5 0  Shenker and Kadanoff 

C~ 
k~ 

I -  

t 
o 

x 

O~ , 
0 

I 
x 

§ 
0 0 t  

6 
(~Q)-I 

E 

I. 50 x I0 -3 
o 1.25 x 10 -3 

, 1.00 • 10 .3 
+ 0 .75 x 10 -3 
x 0 .50  x I0 -3 

o 0 .25  x 10 -3 

i r 

12 

Fig. 10. Ev idence  for the exis tence of the scal ing func t ion  hl~ = P 3 i ( z o ) Q ~ i  l, where  

z 0 is a f ixed poin t  of TQ3, on  the 0 = �89 symmet ry  line. o3i(zo)Q~ ~ has  been  p lo t ted  versus 

(cQ3i)-  1 for several  values  of Q3i a n d  c = k c - k. 

smoothly as e passes through zero, it is unreasonable to assume any 
singularity in e at c = 0 in R h, for any finite value of i. We therefore argue 
that the only reasonable value of p is l, = 1. 

In Ref. 6, Greene points out that for k = 0.9, the exponential damping 
coefficient for A(to) is the same (to within 10-2%) as the convergence rate 
for the residues. In our notation this implies that f l ( k )  = ( k  C - k)fl01n W* 
holds at this value of k. Our data are consistent with this relationship 
holding to within 1% for all k close to kc. 

It is interesting to note that/30 and Yo are within a few per cent of each 
other. We do not yet know whether this is merely a numerical coincidence, 
or an indication of a rather deep relationship between the two scaling laws 
(3.10) and (3.21). There is another identity between exponents; to within 
numerical accuracy, 

7 ,  = y ,  - xt (3.22) 

with I = 0, 1. This is easily explained since, for e = 0, the ratio Pi is 
proportional to the matrix element 3Oa/Or  o. Since 0 scales as QX, and r 
scales as Qy', we would expect p to scale as Q x,-y,. 

We are left with two pairs of independent scaling exponents, x z and Yz- 
The l = 0 pair describes scaling near 0 = 0, while the second pair describes 
the 0 = 1/2 scaling. One might expect the two scaling behaviors to be quite 
independent. Surprisingly, there is a nontrivial relationship between them, 

x j  + Y l  = J =  xo + Yo (3.23) 

with a~ = 3.050 ___ .001. This is a hint that perhaps the fundamental scaling 
entity has dimensions r • 0. 
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3 . 3 .  U n i v e r s a l i t y  

We have found a very intricate scaling structure for a very specific 
problem; the Golden Mean KAM curve of the standard map. It is 
important to know how universal this scaling behavior is. We have studied 
three related problems and found similar scaling behavior in each one. Our 
results are summarized in Table II, and are discussed below. 

(i) S t a n d a r d  Map with W =  (3141111. . . ) .  As can be seen in 
Table II, the scaling exponents and asymptotic values of the residue were 
the same as before, to within numerical uncertainty. Furthermore, the 
coefficients aj were also identical to within the error bounds. This is 
evidence that perhaps the scaling behavior depends only on the asymptotic 
character of the continued fraction representation of the winding number. 

(ii) S t a n d a r d  Map  with W = ( 2 2 2 . . . ) .  Here, the exponents were 
apparently the same, but the asymptotic values of the residue and the 
coefficients aj were different. The per cent differences in the coefficients 
went as high as 40% compared to a numerical uncertainty on the order of 
2%. An important difference between this winding number and the Golden 
Mean is that the routing periodicity in this case is two (see Table III). This 
may be crucial in understanding the discrepancy in residues and coeffi- 
cients. 

N o n s t a n d a r d  Map  with W = (1111 . . .  ) = W*. We studied 
the map 

r n +  1 "~" r n - -  ~ [sin2~'O. + 0 . 0 1  s i n 6 ~ O . ]  

O.+, = O. + r.+1 
(3.24) 

Table III. Routing Patterns for Rational 

Approxlmants to W = ( 2 2 2 . . . )  = ~/2 - 1 

i Wi = Pi/Qi Routing pattern 

o o/1 i 
1 1/2 iii 
2 2/5 I 
3 5/12 IlI 
4 12/29 I 
5 29/70 III 
6 70/169 I 
7 164/408 III 
8 408/985 I 
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and found identical values of the scaling exponents, residues, and coeffi- 
cients aj (Table II). It should be noted that the perturbation - .01(k/2~r)  
sin 6~rO preserves all symmetries of the map. 

Thus, in three closely related problems we found scaling exponents 
that agreed to within numerical uncertainty. It is fair to say that this 
indicates the existence of a "universality class" of problems which share 
this scaling behavior. We certainly do expect there to be other universality 
classes having quite different behavior. 

A P P E N D I X  

All of the numerical work was done in FORTRAN on a DEC-2050 
computer using double precision (approximately 16 digits). Our study of 
the Golden Mean K.AM curve involved Qi-cycles whose length ranged 
from Qo = 1 to Q21--17711. A priori, one might expect the numerical 

error to be astronomical (on the order of 10-16 X 2105), rendering the results 
meaningless. However, the internal consistency of our results provides some 
indication that numerical errors did not dominate our results. 5 

Using relations 3.8, 3.9, 3.14, and 3.15 we can compute a set of 
"apparent"  scaling exponents at a given value of i using only data from 
Qi- 1, Qi, and Qi+ 1 cycles. For  i = 8 ( Qi = 34) all the exponents are within 
1% of their final value. At this value of i, even the worst-case estimation of 
error leaves us with five significant figures. It appears that we can observe 
the scaling behavior in a regime where numerical errors are insignificant. 

Furthermore, we have tested the effect of numerical error by adding a 
noise term into the recursion relations. The scaling results were essentially 
unchanged, although the convergence broke down for very large Oi. For 
i = 13, Qi = 377, the scaling exponents differed from the no noise result by 
less than 6 x 10-4% and 6 x 10-5% for the noise levels 10 -12 and 10 -14, 
respectively. Furthermore, the residue values for both cases were within 
5 x 10-3% of the no noise result at Qi = 377. Now, at this value of Qi, the 
exponent values are within .001 (our quoted numerical uncertainty) of the 
final values. Thus we can argue that the scaling behavior we observe is not 
a product of our numerical error but is truly a manifestation of the 
properties of the standard map itself. 

It should be noted that the numerical uncertainties quoted are merely 

5 Greene, in Ref. 8, shows that numerical errors tend to propagate along, not across, the KAM 
curve. It is not known whether this is responsible for the remarkable internal consistency of 
our data displays. 
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very conservative estimates of the internal consistency of our data, and in 
no way reflect an analysis of the error from first principles. 

We have included, in Tables IV and V, a representative sample of our 
numerical data. Table IV lists the positive residue values for the standard 
map with three different values of k, and for the standard map with 10-14 
noise and one value of k. Using Greene's conclusions about residues, Eq. 
(2.10), such data allow us to determine the value of kr Table V lists the 
apparent values of x 0 for the various cases. This apparent exponent is 
calculated via the formula 

In[ di+ 1(0) 4(0) ] 
In W* (A. 1) 

Table IV. Positive Residue Values for Cycles of the Standard Map with Three 
Different Values of k; k = k c - 10 -4, k = kc, k = k~ + 10 -4. Also Included are 

the Residue Values for Cycles of the Standard Map with a Noise Term of 
Magnitude 10- ~4 and k = k c 

Standard m a p  
Standard m a p  with 1 0 E  - 14 noise  

Q K = 0 .9715354  K = 0 .9716354  K = 0 .9717354  K = 0 .9716354  

1 1 0 . 2 4 2 8 8 4  0 . 2 4 2 9 0 9  0.242934 0.242909 
2 2 0 . 2 3 5 9 7 0  0 . 2 3 6 0 1 9  0.236067 0.236019 
3 3 0 . 2 6 0 5 9 9  0 . 2 6 0 6 8 0  0.260761 0.260680 
4 5 0 . 2 4 1 8 8 9  0.242015 0.242141 0.242015 
5 8 0 . 2 5 5 3 0 6  0 . 2 5 5 5 2 0  0.255734 0.255520 
6 13 0.246271 0.246608 0.246946 0.246608 
7 21 0 . 2 5 1 7 3 8  0 . 2 5 2 2 9 9  0.252861 0.252299 
8 34 0 . 2 4 7 8 2 1  0 . 2 4 8 7 2 0  0.249623 0.248720 
9 55 0 . 2 4 9 4 6 2  0.250937 0.252421 0.250937 

10 89 0 . 2 4 7 1 8 4  0 . 2 4 9 5 6 8  0.251975 0.249568 
11 144 0 . 2 4 6 5 2 6  0 . 2 5 0 4 0 8  0.254352 0.250408 
12 233 0 . 2 4 3 6 1 7  0.249893 0.256331 0.249893 
13 377 0 . 2 4 0 0 5 9  0 . 2 5 0 2 0 8  0.260788 0.250208 
14 610 0 . 2 3 3 7 1 9  0 . 2 5 0 0 1 5  0.267454 0.250014 
15 987 0 . 2 2 4 1 4 3  0 . 2 5 0 1 3 2  0.279158 0.250132 
16 1 5 9 7  0.209171 0.250059 0.299011 0.250055 
17 2 5 8 4  0.187041 0.250101 0.334639 0.250081 
18 4 1 8 1  0 . 1 5 5 8 8 2  0 . 2 5 0 0 7 2  0.401879 0.250087 
19 6 7 6 5  0 . 1 1 5 9 5 3  0 . 2 5 0 0 8 3  0.541916 0.250194 
20 1 0 9 4 6  0 . 0 7 1 7 0 5  0 . 2 5 0 0 6 6  0.883108 0.250027 
21 1 7 7 1 1  0 . 0 3 2 8 8 9  0.250061 1.965774 0.257111 
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Table V. Apparent Exponent Values for Cycles of the Standard Map with 
Three Different Values of k; k = k c - 10 -4, k = k c, k = k c + 10 -4. Also Included 
are the Exponent Values for Cycles of the Standard Map with a Noise Term of 

Magnitude 10- ]4 and k = k c 
i I 

Standard m a p  
Standard m a p  wi th  1 0 E  - 14 noise  

Q K = 0 .9715354  K = 0 .9716354  K = 0 .9717354  K = 0 .9716354  

2 2 0.584152 0.584125 0.584098 0.584125 
3 3 0.813029 0.812973 0.812917 0.812973 
4 5 0.689105 0.689021 0.688937 0.689021 
5 8 0.745081 0.744941 0.744800 0.744941 
6 13 0.711971 0.711744 0.711516 0.711744 
7 21 0.728624 0.728253 0.727882 0.728253 
8 34 0.718536 0.717932 0.717326 0.717932 
9 55 0.724460 0.723478 0.722493 0.723478 

10 89 0.721556 0.719957 0.718350 0.719957 
11 144 0.724544 0.721947 0.719328 0.721947 
12 233 0.724907 0.720687 0.716411 0.720687 
13 377 0.728259 0.721421 0.714433 0.721421 
14 610 0.732020 0.720960 0.709505 0.720960 
15 987 0.739034 0.721234 0.702384 0.721234 
16 1597 0.749514 0.721064 0.689835 0.721063 
17 2584 0.766009 0.721167 0.668904 0.721169 
18 4181 0.790665 0.721106 0.632304 0.721091 
19 6765 0.825410 0.721147 0.567350 0.721162 
20 10946 0.869635 0.721128 0.451720 0.721141 

i m l  
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